一種汽輪機低壓缸除濕疏水槽結構及工作方法與流程
本發(fā)明屬于汽輪機發(fā)電領(lǐng)域,具體涉及一種汽輪機低壓缸除濕疏水槽結構及工作方法。
背景技術(shù):
目前中國電源結構不盡合理,火電機組占比高,電網(wǎng)調峰能力嚴重不足,尤其是近幾年來(lái)風(fēng)電、光電的快速增加,電網(wǎng)缺乏調峰電源的問(wèn)題尤其突顯,造成大量棄風(fēng)、棄光的現象和可再生能源的巨大損失。要消納更多的新能源,電網(wǎng)需要具備更高的靈活性,然而我國目前電源結構中靈活電源少,是導致調峰能力不足,是棄風(fēng)棄光主要原因。目前計劃實(shí)施2.2億千瓦燃煤機組的靈活性改造,使機組具備深度調峰能力,并進(jìn)一步提高火電機組負荷響應速率,部分機組具備快速啟停調峰能力。提升靈活性改造預期將使熱電機組增加20%額定容量的調峰能力,最小技術(shù)出力達到40-50%額定容量;純凝機組增加15-20%額定容量的調峰能力,最小技術(shù)出力達到30-35%額定容量。
大多數火電機組深度調峰運行過(guò)程中,汽輪機處于較低負荷狀態(tài),低壓缸末幾級葉片容積流量很小,蒸汽濕度顯著(zhù)增加,低壓缸葉片構成的級內流動(dòng)狀態(tài)會(huì )發(fā)生較大變化,在葉片壓力面上形成流動(dòng)分離,在葉根處的脫流,葉片出現鼓風(fēng)、水蝕等現象。這些變化不僅影響機組效率,還使葉片頂部水蝕加??;而地熱電站及核能發(fā)電的汽輪機低壓缸所面臨的濕蒸汽問(wèn)題顯得更加突出,這些水滴的持續作用會(huì )使低壓末幾級動(dòng)葉片長(cháng)期受高速水滴的沖擊和侵蝕,造成葉片逐漸水蝕,甚至斷裂,將嚴重影響并威脅機組長(cháng)期安全運行。
應用最早和最廣泛除濕方法是外緣分離法,在外緣開(kāi)設除濕溝槽,利用機構對汽流的扭轉和離心效應,將水滴甩向外緣,經(jīng)過(guò)溝槽后進(jìn)入冷凝器中。根據除濕位置不同,汽輪機內部除濕方法可以以下3種:靜葉除濕技術(shù)、動(dòng)葉除濕技術(shù)及隔板除濕技術(shù)。
在現有的汽輪機低壓缸濕蒸汽除濕技術(shù)中,按照除濕位置及除濕方式的不同,有空心靜葉抽吸、吹掃及加熱除濕法、動(dòng)葉表面槽道除濕法、加長(cháng)動(dòng)靜葉間隙法及隔板裝置除濕法等。但是在運的汽輪機低壓葉片仍舊有較嚴重水蝕情況發(fā)生,為機組汽輪機深度調峰及安全運行埋下了巨大的隱患,也為電網(wǎng)穩定帶來(lái)不確定性。
技術(shù)實(shí)現要素:
本發(fā)明的目的在于克服上述不足,提供一種汽輪機低壓缸除濕疏水槽結構及工作方法,介于靜葉除濕技術(shù)和隔板除濕技術(shù),本發(fā)明結構合理、更加高效而安全。
為了達到上述目的,一種汽輪機低壓缸除濕疏水槽結構,包括設置在汽輪機低壓內缸內的圓形除濕疏水槽,圓形除濕疏水槽底部開(kāi)設有若干疏水通孔,圓形除濕疏水槽與汽輪機低壓內缸的連接處開(kāi)設有內壁進(jìn)汽側倒圓和內壁出汽側倒圓。
圓形除濕疏水槽開(kāi)設在汽輪機低壓內缸的靜葉片出口與低壓內缸相連處或動(dòng)葉片出口與低壓內缸相連處。
汽輪機低壓內缸的上下缸對應位置處均設置有圓形除濕疏水槽。
圓形除濕疏水槽與汽輪機低壓內缸體內壁的進(jìn)汽側和出汽側形成內壁進(jìn)汽側夾角和內壁出汽側夾角。
內壁進(jìn)汽側夾角和內壁出汽側夾角的角度不同。
一種汽輪機低壓缸除濕疏水槽結構的工作方法,包括以下步驟:
濕蒸汽流過(guò)汽輪機低壓缸時(shí),在離心應力作用下,濕蒸汽中的水滴位于汽輪機低壓內缸體的內壁粘著(zhù)流動(dòng);
一部分水滴沿圓形除濕疏水槽的內壁進(jìn)汽側倒圓逐漸脫離濕蒸汽主流而進(jìn)入圓形除濕疏水槽;
另一部分水滴沖擊在內壁出汽側倒圓進(jìn)入圓形除濕疏水槽;
進(jìn)入圓形除濕疏水槽的水滴不斷匯集形成水,沿圓形除濕疏水槽內壁面向汽輪機低壓缸下半缸的疏水槽底部疏水通孔附近聚集,并通過(guò)疏水通孔流向低壓內外缸夾層中。
一部分水滴從內壁進(jìn)汽側倒圓進(jìn)入圓形除濕疏水槽時(shí)形成內壁進(jìn)汽側夾角。
另一部分水滴從內壁出汽側倒圓進(jìn)入圓形除濕疏水槽時(shí)形成內壁出汽側夾角。
與現有技術(shù)相比,本發(fā)明的除濕疏水槽結構為圓形槽,與汽輪機低壓內缸體內壁的進(jìn)汽側和出汽側過(guò)渡處為不同夾角的優(yōu)化倒圓,便于在濕蒸汽流動(dòng)過(guò)程中濕蒸汽中的微小液滴進(jìn)入除濕疏水槽減速并凝結匯集,并減少對濕蒸汽主流的影響;在汽輪機低壓內缸下半缸的圓形除濕疏水槽底部開(kāi)設有一定直徑的疏水槽底部疏水通孔。本發(fā)明應用更為便捷、結構相對簡(jiǎn)單、位置靈活,且該結構位置的熱應力相對較小,在低壓缸可以設計加工多個(gè)除濕疏水槽,除濕效果較為理想,可以較好地提高機組效率,大幅降低汽輪機低壓末幾級葉片水蝕程度,保證了汽輪機葉片安全。
本發(fā)明在工作時(shí),一部分水滴沿圓形除濕疏水槽的內壁進(jìn)汽側倒圓逐漸脫離濕蒸汽主流而進(jìn)入圓形除濕疏水槽,另一部分水滴沖擊在內壁出汽側倒圓進(jìn)入圓形除濕疏水槽。本發(fā)明應用更為便捷、結構相對簡(jiǎn)單、位置靈活,且該結構位置的熱應力相對較小,在低壓缸可以設計加工多個(gè)除濕疏水槽,除濕效果更為理想,可以較好地提高機組效率,大幅降低汽輪機低壓末幾級葉片水蝕程度,有力保證汽輪機低壓缸的末幾級葉片安全和長(cháng)期運行。
附圖說(shuō)明
圖1為本發(fā)明的位置示意圖;
圖2為本發(fā)明中圓形除濕疏水槽的內部結構圖;
其中,1、汽輪機低壓內缸;2、圓形除濕疏水槽;3、疏水槽底部疏水通孔;4、內壁進(jìn)汽側夾角;5、內壁出汽側夾角;6、內壁進(jìn)汽側倒圓;7、內壁出汽側倒圓。
具體實(shí)施方式
下面結合附圖對本發(fā)明做進(jìn)一步說(shuō)明。
參見(jiàn)圖1和圖2,一種汽輪機低壓缸除濕疏水槽結構,包括設置在汽輪機低壓內缸1內的圓形除濕疏水槽2,圓形除濕疏水槽2底部開(kāi)設有若干由機組大小和位置決定的疏水通孔3,圓形除濕疏水槽2與汽輪機低壓內缸1的連接處開(kāi)設有內壁進(jìn)汽側倒圓6和內壁出汽側倒圓7。便于在濕蒸汽流動(dòng)過(guò)程中濕蒸汽中的較大微小液滴由內壁進(jìn)汽側倒圓6、較小微小液滴由內壁出汽側倒圓7同時(shí)進(jìn)入除濕疏水槽2減速并凝結匯集,減少對濕蒸汽主流和流動(dòng)效率的影響。
圓形除濕疏水槽2開(kāi)設在汽輪機低壓內缸1的靜葉片出口與低壓內缸相連處或動(dòng)葉片出口與低壓內缸相連處。汽輪機低壓內缸1的上下缸對應位置處均設置有圓形除濕疏水槽2。
圓形除濕疏水槽2與汽輪機低壓內缸體1內壁的進(jìn)汽側和出汽側形成內壁進(jìn)汽側夾角4和內壁出汽側夾角5。內壁進(jìn)汽側夾角4和內壁出汽側夾角5的角度不同。
一種汽輪機低壓缸除濕疏水槽結構的工作方法,包括以下步驟:
濕蒸汽流過(guò)汽輪機低壓缸時(shí),在離心應力作用下,濕蒸汽中的水滴位于汽輪機低壓內缸體1的內壁粘著(zhù)流動(dòng);
一部分水滴沿圓形除濕疏水槽2的內壁進(jìn)汽側倒圓6逐漸脫離濕蒸汽主流而進(jìn)入圓形除濕疏水槽2;
另一部分水滴沖擊在內壁出汽側倒圓7進(jìn)入圓形除濕疏水槽2;
進(jìn)入圓形除濕疏水槽2的水滴不斷匯集形成水,沿圓形除濕疏水槽2內壁面向汽輪機低壓缸下半缸的疏水槽底部疏水通孔3附近聚集,并通過(guò)疏水通孔3流向低壓內外缸夾層中。
一部分水滴從內壁進(jìn)汽側倒圓6進(jìn)入圓形除濕疏水槽2時(shí)形成內壁進(jìn)汽側夾角4。
另一部分水滴從內壁出汽側倒圓7進(jìn)入圓形除濕疏水槽2時(shí)形成內壁出汽側夾角5。
本發(fā)明提供一種優(yōu)化后結構合理、更加高效而安全的汽輪機低壓缸新型除濕疏水槽結構及使用方法。本發(fā)明應用更為便捷、結構相對簡(jiǎn)單、位置靈活,且該結構位置的熱應力相對較小,在低壓缸可以設計加工多個(gè)除濕疏水槽,除濕效果更為理想,可以較好地提高機組效率,大幅降低汽輪機低壓末幾級葉片水蝕程度,有力保證汽輪機低壓缸的末幾級葉片安全和長(cháng)期運行。
咨詢(xún)熱線(xiàn)
133-6050-3273400電話(huà)
微信客服